Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
Respir Med ; 197: 106832, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778435

ABSTRACT

RATIONALE: SARS-CoV-2 continues to cause a global pandemic and management of COVID-19 in outpatient settings remains challenging. OBJECTIVE: We sought to describe characteristics of patients with chronic respiratory disease (CRD) experiencing symptoms consistent with COVID-19, who were seen in a novel Acute Respiratory Clinic, prior to widely available testing, emergence of variants, COVID-19 vaccination, and post-vaccination (breakthrough) SARS-CoV-2 infections. METHODS: Retrospective electronic medical record data were analyzed from 907 adults with presumed COVID-19 seen between March 16, 2020 and January 7, 2021. Data included demographics, comorbidities, medications, vital signs, laboratory tests, pulmonary function tests, patient disposition, and co-infections. The overdispersed data (aod) R package was used to create a logit model using COVID-19 diagnosis by PCR as the dichotomous outcome variable. Univariate, conventional multivariate and elastic net machine learning were used to analyze data. RESULTS: Male gender, elevated baseline temperature, and respiratory rate predicted COVID-19 diagnosis. Eosinopenia, neutrophilia, and lymphocytosis were also associated with COVID-19 diagnosis. However, asthma and COPD diagnoses were not associated with SARS-CoV-2 PCR positive test. Male gender, low oxygen saturation, and lower forced expiratory volume in 1 s (FEV1) were associated with higher hospital referral. CONCLUSIONS: CRD patients with acute respiratory symptoms in the ambulatory setting were more likely to have COVID-19 if male, febrile and tachypneic. Patients with lower pre-morbid FEV1 and lower SPO2 are more likely to be referred to the hospital. A composite of vitals sigs and WBC differential help risk stratify CRD patients seeking care for presumed COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines , Fever/diagnosis , Humans , Male , Referral and Consultation , Retrospective Studies
5.
Obes Sci Pract ; 7(3): 339-345, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1137057

ABSTRACT

Obesity is considered as a risk factor for COVID-19 with insulin resistance and increased production of inflammatory cytokines as likely mechanisms. Glucagon-like peptide-1 (GLP-1) agonists and inhaled nitric oxide are proposed therapeutic approaches to treat COVID-19 because of their broad anti-inflammatory effects. One approach that might augment GLP-1 levels would be dietary supplementation with L-arginine. Beyond cytokines, multiple studies have started to investigate the relationship between new-onset diabetes and COVID-19. In a posthoc analysis of a randomized, placebo-controlled human clinical trial of L-arginine supplementation in people with asthma and predominantly with obesity, the results showed that 12 weeks of continuous L-arginine supplementation significantly decreased the level of IL-21 (p = 0.02) and increased the level of insulin (p = 0.02). A high arginine level and arginine/ADMA ratio were significantly associated with lower CCL-20 and TNF-α levels. The study also showed that L-arginine supplementation reduces cytokine levels and improves insulin deficiency or resistance, both are two big risk factors for COVID-19 severity and mortality. Given its safety profile and ease of accessibility, L-arginine is an attractive potential therapeutic option that allows for a cost-effective way to improve outcomes in patients. An expedition of further investigation or clinical trials to test these hypotheses is needed.

6.
Int J Environ Res Public Health ; 17(20)2020 10 16.
Article in English | MEDLINE | ID: covidwho-1050604

ABSTRACT

This study examines how experience of severe acute respiratory syndrome (SARS) influences the impact of coronavirus disease (COVID-19) on international tourism demand for four Asia-Pacific Economic Cooperation (APEC) economies, Taiwan, Hong Kong, Thailand, and New Zealand, over the 1 January-30 April 2020 period. To proceed, panel regression models are first applied with a time-lag effect to estimate the general effects of COVID-19 on daily tourist arrivals. In turn, the data set is decomposed into two nation groups and fixed effects models are employed for addressing the comparison of the pandemic-tourism relationship between economies with and without experiences of the SARS epidemic. Specifically, Taiwan and Hong Kong are grouped as economies with SARS experiences, while Thailand and New Zealand are grouped as countries without experiences of SARS. The estimation result indicates that the number of confirmed COVID-19 cases has a significant negative impact on tourism demand, in which a 1% COVID-19 case increase causes a 0.075% decline in tourist arrivals, which is a decline of approximately 110 arrivals for every additional person infected by the coronavirus. The negative impact of COVID-19 on tourist arrivals for Thailand and New Zealand is found much stronger than for Taiwan and Hong Kong. In particular, the number of tourist arrivals to Taiwan and Hong Kong decreased by 0.034% in response to a 1% increase in COVID-19 confirmed cases, while in Thailand and New Zealand, a 1% national confirmed cases increase caused a 0.103% reduction in tourism demand. Moreover, the effect of the number of domestic cases on international tourism is found lower than the effect caused by global COVID-19 mortality for the economies with SARS experiences. In contrast, tourist arrivals are majorly affected by the number of confirmed COVID-19 cases in Thailand and New Zealand. Finally, travel restriction in all cases is found to be the most influencing factor for the number of tourist arrivals. Besides contributing to the existing literature focusing on the knowledge regarding the nexus between tourism and COVID-19, the paper's findings also highlight the importance of risk perception and the need of transmission prevention and control of the epidemic for the tourism sector.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Travel/statistics & numerical data , COVID-19 , Hong Kong/epidemiology , Humans , New Zealand/epidemiology , Pandemics , Taiwan/epidemiology , Thailand/epidemiology
7.
Respir Med ; 176: 106275, 2021 01.
Article in English | MEDLINE | ID: covidwho-947438

ABSTRACT

BACKGROUND: The effects of chronic inhaled and systemic corticosteroids use on COVID-19 susceptibility and severity are unclear. Since many patients with chronic pulmonary diseases rely on corticosteroids to control disease, it is important to understand the risks of their use during the pandemic. We aim to study if the use of inhaled or systemic corticosteroids affects the likelihood of developing COVID-19 infection. METHODS: We used the National Jewish Health electronic medical record research database to identify a cohort of all subjects who were tested for suspected COVID-19 between March 11 - June 23, 2020. Testing results, medication use, and comorbidities were obtained from the medical record. Following a comparison of different propensity score weighting methods, overlap propensity score weighting was used to analyze the association between medication use and COVID-19 diagnosis. RESULTS: The cohort consisted of 928 patients, of which 12% tested positive. The majority (66%) of patients had a history of chronic pulmonary diseases. There was no significant association between inhaled corticosteroid use and testing positive for COVID-19. Interestingly, systemic corticosteroid use was associated with a lower odds ratio (0.95, 95% CI: 0.91-0.99) of testing positive for COVID-19. Similar results were noted when the analysis was restricted to those with any chronic pulmonary diseases, with asthma or with chronic obstructive pulmonary disease (COPD). CONCLUSIONS: Our study supports the recommendation that patients with chronic pulmonary diseases, including asthma and COPD who require treatment with either inhaled or systemic corticosteroids, should continue their use during the COVID-19 pandemic.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , COVID-19/epidemiology , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Adult , Aged , Asthma/complications , Asthma/diagnosis , COVID-19/diagnosis , Cohort Studies , Female , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Propensity Score , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL